
REVIEW ARTICLE OPEN

Deep learning-enabled medical computer vision
Andre Esteva 1✉, Katherine Chou2,5, Serena Yeung3,5, Nikhil Naik 1,5, Ali Madani1,5, Ali Mottaghi3,5, Yun Liu 2, Eric Topol4,
Jeff Dean2 and Richard Socher1

A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including
medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the
development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical
imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural
networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging
applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for
continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer
vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these
technologies.
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INTRODUCTION
Computer vision (CV) has a rich history spanning decades1 of
efforts to enable computers to perceive visual stimuli mean-
ingfully. Machine perception spans a range of levels, from low-
level tasks such as identifying edges, to high-level tasks such as
understanding complete scenes. Advances in the last decade have
largely been due to three factors: (1) the maturation of deep
learning (DL)—a type of machine learning that enables end-to-
end learning of very complex functions from raw data2 (2) strides
in localized compute power via GPUs3, and (3) the open-sourcing
of large labeled datasets with which to train these algorithms4.
The combination of these three elements has enabled individual
researchers the resource access needed to advance the field. As
the research community grew exponentially, so did progress.
The growth of modern CV has overlapped with the generation

of large amounts of digital data in a number of scientific fields.
Recent medical advances have been prolific5,6, owing largely to
DL’s remarkable ability to learn many tasks from most data
sources. Using large datasets, CV models can acquire many
pattern-recognition abilities—from physician-level diagnostics7 to
medical scene perception8. See Fig. 1.
Here we survey the intersection of CV and medicine, focusing

on research in medical imaging, medical video, and real clinical
deployment. We discuss key algorithmic capabilities which
unlocked these opportunities, and dive into the myriad of
accomplishments from recent years. The clinical tasks suitable
for CV span many categories, such as screening, diagnosis,
detecting conditions, predicting future outcomes, segmenting
pathologies from organs to cells, monitoring disease, and clinical
research. Throughout, we consider the future growth of this
technology and its implications for medicine and healthcare.

COMPUTER VISION
Object classification, localization, and detection, respectively refer
to identifying the type of an object in an image, the location
of objects present, and both type and location simultaneously.

The ImageNet Large-Scale Visual Recognition Challenge9 (ILSVRC)
was a spearhead to progress in these tasks over the last decade. It
created a large community of DL researchers competing and
collaborating together to improve techniques on various CV tasks.
The first contemporary, GPU-powered DL approach, in 201210,
yielded an inflection point in the growth of this community,
heralding an era of significant year-over-year improvements11–14

through the competition’s final year in 2017. Notably, classification
accuracy achieved human-level performance during this period.
Within medicine, fine-grained versions of these methods15 have
successfully been applied to the classification and detection of
many diseases (Fig. 2). Given sufficient data, the accuracy often
matches or surpasses the level of expert physicians7,16. Similarly,
the segmentation of objects has substantially improved17,18,
particularly in challenging scenarios such as the biomedical
segmentation of multiple types of overlapping cells in microscopy.
The key DL technique leveraged in these tasks is the convolutional
neural network19 (CNN)—a type of DL algorithm which hardcodes
translational invariance, a key feature of image data. Many other
CV tasks have benefited from this progress, including image
registration (identifying corresponding points across similar
images), image retrieval (finding similar images), and image
reconstruction and enhancement. The specific challenges of
working with medical data require the utilization of many types
of AI models.
These techniques largely rely on supervised learning, which

leverages datasets that contain both data points (e.g. images) and
data labels (e.g. object classes). Given the sparsity and access
difficulties of medical data, transfer learning—in which an
algorithm is first trained on a large and unrelated corpus (e.g.
ImageNet4), then fine-tuned on a dataset of interest (e.g. medical)
—has been critical for progress. To reduce the costs associated
with collecting and labeling data, techniques to generate
synthetic data, such as data augmentation20 and generative
adversarial networks (GANs)21 are being developed. Researchers
have even shown that crowd-sourcing image annotations can
yield effective medical algorithms22,23. Recently, self-supervised
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learning24—in which implicit labels are extracted from data points
and used to train algorithms (e.g predicting the spatial arrange-
ment of tiles generated from splitting an image into pieces)—
have pushed the field towards fully unsupervised learning, which
lacks the need for labels. Applying these techniques in medicine
will reduce the barrier to development and deployment.
Medical data access is central to this field, and key ethical and

legal questions must be addressed. Do patients own their de-
identified data? What if methods to re-identify data improve over
time? Should the community open-source large quantities of data?
To date, academia and industry have largely relied on small, open-
source datasets, and data collected through commercial products.
Dynamics around data sharing and country-specific availability will
impact deployment opportunities. The field of federated learn-
ing25—in which centralized algorithms can be trained on distributed
data that never leaves protected enclosures—may enable a
workaround in stricter jurisdictions.

These advances have spurred growth in other domains of CV,
such as multimodal learning, which combines vision with other
modalities such as language (Fig. 1a)26, time-series data, and
genomic data5. These methods can combine with 3D vision27,28

to turn depth-cameras into privacy-preserving sensors29, making
deployment easier for patient settings such as the intensive care
unit8. The range of tasks is even broader in video. Applications
like activity recognition30 and live scene understanding31 are
useful in detecting and responding to important or adverse
clinical events32.

MEDICAL IMAGING
In recent years the number of publications applying computer
vision techniques to static medical imagery has grown from
hundreds to thousands33. A few areas have received substantial
attention—radiology, pathology, ophthalmology, and dermatol-
ogy—owing to the visual pattern-recognition nature of diagnostic
tasks in these specialities, and the growing availability of highly
structured images.
The unique characteristics of medical imagery pose a number of

challenges to DL-based computer vision. For one, images can be
massive. Digitizing histopathology slides produces gigapixel
images of around 100,000 ×100,000 pixels, whereas typical CNN
image inputs are around 200 ×200 pixels. Further, different
chemical preparations will render different slides for the same
piece of tissue, and different digitization devices or settings may
produce different images for the same slide. Radiology modalities
such as CT and MRI render equally massive 3D images, forcing
standard CNNs to either work with a set of 2D slices, or adjust their
internal structure to process in 3D. Similarly, ultrasound renders a
time-series of noisy 2D slices of a 3D context–slices which are
spatially correlated but not aligned. DL has started to account for
the unique challenges of medical data. For instance, multiple-
instance-learning (MIL)34 enables learning from datasets containing
massive images and few labels (e.g. histopathology). 3D convolu-
tions in CNNs are enabling better learning from 3D volumes (e.g
MRI and CT)35. Spatio-temporal models36 and image registration
enable working with time-series images (e.g. ultrasound).
Dozens of companies have obtained US FDA and European CE

approval for medical imaging AI37, and commercial markets have
begun to form as sustainable business models are created. For
instance, regions of high-throughput healthcare, such as India and
Thailand, have welcomed the deployment of technologies such as
diabetic retinopathy screening systems38. This rapid growth has
now reached the point of directly impacting patient outcomes—
the US CMS recently approved reimbursement for a radiology
stroke triage use-case which reduces the time it takes for patients
to receive treatment39.

Fig. 1 Example medical computer vision tasks. a Multimodal
discriminative model. Deep learning architectures can be con-
structed to jointly learn from both image data, typically with
convolutional networks, and non-image data, typically with general
deep networks. Learned annotations can include disease diagnos-
tics, prognostics, clinical predictions, and combinations thereof.
b Generative model. Convolutional neural networks can be trained
to generate images. Tasks include image-to-image regression
(shown), super-resolution image enhancement, novel image gen-
eration, and others.

Fig. 2 Physician-level diagnostic performance. CNNs—trained to classify disease states—have been extensively tested across diseases, and
benchmarked against physicians. Their performance is typically on par with experts when both are tested on the same image classification
task. a Dermatology7 and b Radiology156. Examples reprinted with permission and adapted for style.
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CV in medical modalities with non-standardized data collection
requires the integration of CV into existing physical systems. For
instance, in otolaryngology, CNNs can be used to help primary care
physicians manage patients’ ears, nose, and throat40, through
mountable devices attached to smartphones41. Hematology and
serology can benefit from microscope-integrated AIs42 that
diagnose common conditions43 or count blood cells of various
types44—repetitive tasks that are easy to augment with CNNs. AI in
gastroenterology has demonstrated stunning capabilities. Video-
based CNNs can be integrated into endoscopic procedures45 for
scope guidance, lesion detection, and lesion diagnosis. Applications
include esophageal cancer screening46, detecting gastric can-
cer47,48, detecting stomach infections such as H. Pylori49, and even
finding hookworms50. Scientists have taken this field one step
further by building entire medical AI devices designed for
monitoring, such as at-home smart toilets outfitted with diagnostic
CNNs on cameras51. Beyond the analysis of disease states, CV can
serve the future of human health and welfare through applications
such as screening human embryos for implantation52.
Computer vision in radiology is so pronounced that it has

quickly burgeoned into its own field of research, growing a corpus
of work53–55 that extends into all modalities, with a focus on X-
rays, CT, and MRI. Chest X-ray analysis—a key clinical focus
area33—has been an exemplar. The field has collected nearly 1
million annotated, open-source images56–58—the closest Ima-
geNet9 equivalent to date in medical CV. Analysis of brain
imagery59 (particularly for time-critical use-cases like stroke), and
abdominal imagery60 have similarly received substantial attention.
Disease classification, nodule detection61, and region segmenta-
tion (e.g. ventricular62) models have been developed for most
conditions for which data can be collected. This has enabled the
field to respond rapidly in times of crisis—for instance, developing
and deploying COVID-19 detection models63. The field continues
to expand with work in image translation (e.g. converting noisy
ultrasound images into MRI), image reconstruction and enhance-
ment (e.g. converting low-dosage, low-resolution CT images into
high-resolution images64), automated report generation, and
temporal tracking (e.g. image registration to track tumor growth
over time). In the sections below, we explore vision-based
applications in other specialties.

CARDIOLOGY
Cardiac imaging is increasingly used in a wide array of clinical
diagnoses and workflows. Key clinical applications for deep learning
include diagnosis and screening. The most common imaging
modality in cardiovascular medicine is the cardiac ultrasound, or
echocardiogram. As a cost-effective, radiation-free technique,
echocardiography is uniquely suited for DL due to straightforward
data acquisition and interpretation—it is routinely used in most
acute inpatient facilities, outpatient centers, and emergency
rooms65. Further, 3D imaging techniques such as CT and MRI are
used for the understanding of cardiac anatomy and to better
characterize supply-demand mismatch. CT segmentation algorithms
have even been FDA—cleared for coronary artery visualization66.
There are many example applications. DL can be trained on a

large database of echocardiographic studies and surpass the
performance of board-certified echocardiographers in view
classification67. Computational DL pipelines can assess hyper-
trophic cardiomyopathy, cardiac amyloid, and pulmonary arterial
hypertension68. EchoNet69—a deep learning model that can
recognize cardiac structures, estimate function, and predict
systemic phenotypes that are not readily identifiable to human
interpretation—has recently furthered the field.
To account for challenges around data access,70 data-efficient

echocardiogram algorithms70 have been developed, such as semi-
supervised GANs that are effective at downstream tasks (e.g
predicting left ventricular hypertrophy). To account for the fact that

most studies utilize privately held medical imaging datasets, 10,000
annotated echocardiogram videos were recently open-sourced36.
Alongside this release, a video-based model, EchoNet-Dynamic36,
was developed. It can estimate ejection fraction and assess
cardiomyopathy, alongside a comprehensive evaluation criterion
based on results from an external dataset and human experts.

PATHOLOGY
Pathologists play a key role in cancer detection and treatment.
Pathological analysis—based on visual inspection of tissue
samples under microscope—is inherently subjective in nature.
Differences in visual perception and clinical training can lead to
inconsistencies in diagnostic and prognostic opinions71–73. Here,
DL can support critical medical tasks, including diagnostics,
prognostication of outcomes and treatment response, pathology
segmentation, disease monitoring, and so forth.
Recent years have seen the adoption of sub-micron-level

resolution tissue scanners that capture gigapixel whole-slide
images (WSI)74. This development, coupled with advances in CV
has led to research and commercialization activity in AI-driven
digital histopathology75. This field has the potential to (i)
overcome limitations of human visual perception and cognition
by improving the efficiency and accuracy of routine tasks, (ii)
develop new signatures of disease and therapy from morpholo-
gical structures invisible to the human eye, and (iii) combine
pathology with radiological, genomic, and proteomic measure-
ments to improve diagnosis and prognosis76.
One thread of research has focused on automating the routine,

time-consuming task of localization and quantification of
morphological features. Examples include the detection and
classification of cells, nuclei, and mitoses77–79, and the localization
and segmentation of histological primitives such as nuclei,
glands, ducts, and tumors80–83. These methods typically require
expensive manual annotation of tissue components by patholo-
gists as training data.
Another research avenue focuses on direct diagnostics84–86 and

prognostics87,88 from WSI or tissue microarrays (TMA) for a variety
of cancers—breast, prostate, lung cancer, etc. Studies have even
shown that morphological features captured by a hematoxylin
and eosin (H&E) stain are predictive of molecular biomarkers
utilized in theragnosis85,89. While histopathology slides digitize
into massive, data-rich gigapixel images, region-level annotations
are sparse and expensive. To help overcome this challenge, the
field has developed DL algorithms based on multiple-instance
learning90 that utilize slide-level “weak” annotations and exploit
the sheer size of these images for improved performance.
The data abundance of this domain has further enabled tasks

such as virtual staining91, in which models are trained to predict
one type of image (e.g. a stained image) from another (e.g. a raw
microscopy image). See Fig. 1b. Moving forward, AI algorithms
that learn to perform diagnosis, prognosis, and theragnosis using
digital pathology image archives and annotations readily available
from electronic health records have the potential to transform the
fields of pathology and oncology.

DERMATOLOGY
The key clinical tasks for DL in dermatology include lesion-specific
differential diagnostics, finding concerning lesions amongst many
benign lesions, and helping track lesion growth over time92. A
series of works have demonstrated that CNNs can match the
performance of board-certified dermatologists at classifying
malignant skin lesions from benign ones7,93,94. These studies have
sequentially tested increasing numbers of dermatologists (25–7

57–93, 157–94), consistently demonstrating a sensitivity and
specificity in classification that matches or even exceeds physician
levels. These studies were largely restricted to the binary
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classification task of discerning benign vs malignant cutaneous
lesions, classifying either melanomas from nevi or carcinomas
from seborrheic keratoses.
Recently, this line of work has expanded to encompass

differential diagnostics across dozens of skin conditions95, includ-
ing non-neoplastic lesions such as rashes and genetic conditions,
and incorporating non-visual metadata (e.g. patient demographics)
as classifier inputs96. These works have been catalyzed by open-
access image repositories and AI challenges that encourage teams
to compete on predetermined benchmarks97.
Incorporating these algorithms into clinical workflows would

allow their utility to support other key tasks, including large-scale
detection of malignancies on patients with many lesions, and
tracking lesions across images in order to capture temporal
features, such as growth and color changes. This area remains
fairly unexplored, with initial works that jointly train CNNs to
detect and track lesions98.

OPHTHALMOLOGY
Ophthalmology, in recent years, has observed a significant uptick
in AI efforts, with dozens of papers demonstrating clinical
diagnostic and analytical capabilities that extend beyond current
human capability99–101. The potential clinical impact is signifi-
cant102,103—the portability of the machinery used to inspect the
eye means that pop-up clinics and telemedicine could be used to
distribute testing sites to underserved areas. The field depends
largely on fundus imaging, and optical coherence tomography
(OCT) to diagnose and manage patients.
CNNs can accurately diagnose a number of conditions. Diabetic

retinopathy—a condition in which blood vessels in the eyes of
diabetic patients “leak” and can lead to blindness—has been
extensively studied. CNNs consistently demonstrate physician-level
grading from fundus photographs104–107, which has led to a recent
US FDA-cleared system108. Similarly, they can diagnose or predict
the progression of center-involved diabetic macular edema109,
age-related macular degeneration107,110, glaucoma107,111, manifest
visual field loss112, childhood blindness113, and others.
The eyes contain a number of non-human-interpretable

features, indicative of meaningful medical information, that CNNs
can pick up on. Remarkably, it was shown that CNNs can classify a
number of cardiovascular and diabetic risk factors from fundus
photographs114, including age, gender, smoking, hemoglobin-A1c,
body-mass index, systolic blood pressure, and diastolic blood
pressure. CNNs can also pick up signs of anemia115 and chronic
kidney disease116 from fundus photographs. This presents an
exciting opportunity for future AI studies predicting nonocular
information from eye images. This could lead to a paradigm shift
in care in which eye exams screen you for the presence of both
ocular and nonocular disease—something currently limited for
human physicians.

MEDICAL VIDEO
Surgical applications
The CV may provide significant utility in procedural fields such as
surgery and endoscopy. Key clinical applications for deep learning
include enhancing surgeon performance through real-time con-
textual awareness117, skills assessments, and training. Early studies
have begun pursuing these objectives, primarily in video-based
robotic and laparoscopic surgery—a number of works propose
methods for detecting surgical tools and actions118–124. Some
studies analyze tool movement or other cues to assess surgeon
skill119,121,123,124, through established ratings such as the Global
Operative Assessment of Laparoscopic Skills (GOALS) criteria for
laparoscopic surgery125. Another line of work uses CV to recognize
distinct phases of surgery during operations, towards developing

context-aware computer assistance systems126,127. CV is also
starting to emerge in open surgery settings128, of which there is
a significant volume. The challenge here lies in the diversity of
video capture viewpoints (e.g., head-mounted, side-view, and
overhead cameras) and types of surgeries. For all types of surgical
video, translating CV analysis to tools and applications that can
improve patient outcomes is a natural next direction of research.

Human activity
CV can recognize human activity in physical spaces, such as
hospitals and clinics, for a range of “ambient intelligence”
applications. Ambient intelligence refers to a continuous, non-
invasive awareness of activity in a physical space that can provide
clinicians, nurses, and other healthcare workers with assistance
such as patient monitoring, automated documentation, and
monitoring for protocol compliance (Fig. 3). In hospitals, for
example, early works have demonstrated CV-based ambient
intelligence in intensive care units to monitor for safety-critical
behaviors such as hand hygiene activity32 and patient mobiliza-
tion8,129,130. CV has also been developed for the emergency
department, to transcribe procedures performed during the
resuscitation of a patient131, and for the operating room (OR), to
recognize activities for workflow optimization132. At the hospital
operations level, CV can be a scalable and detailed form of labor
and resource measurement that improves resource allocation for
optimal care133.
Outside of hospitals, ambient intelligence can increase access to

healthcare. For instance, it could enable at-risk seniors to live
independently at home, by monitoring for safety and abnormal-
ities in daily activities (e.g. detecting falls, which are particularly
dangerous for the elderly134,135), assisted living, and physiological
measurement. Similar work136–138 has targeted broader categories
of daily activity. Recognizing and computing long-term descriptive
analytics of activities such as sleeping, walking, and sitting over
time can detect clinically meaningful changes or anomalies136. To
ensure patient privacy, researchers have developed CV algorithms
that work with thermal video data136. Another application area of
CV is assisted living or rehabilitation, such as continuous sign
language recognition to assist people with communication
difficulties139, and monitoring of physiotherapy exercises for stroke
rehabilitation140. CV also offers potential as a tool for remote
physiological measurements. For instance, systems could use
video141 to analyze heart and breathing rates141. As telemedicine
visits increase in frequency, CV could play a role in patient triaging,

Fig. 3 Ambient intelligence. Computer vision coupled with sensors
and video streams enables a number of safety applications in clinical
and home settings, enabling healthcare providers to scale their
ability to monitor patients. Primarily created using models for fine-
grained activity recognition, applications may include patient
monitoring in ICUs, proper hand hygiene and physical action
protocols in hospitals and clinics, anomalous event detection, and
others.
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particularly in times of high demand such as the COVID-19
pandemic142. CV-based ambient intelligence technologies offer a
wide range of opportunities for increased access to quality care.;
However new ethical and legal questions will arise143 in the design
of these technologies.

CLINICAL DEPLOYMENT
As medical AI advances into the clinic144, it will simultaneously
have the power to do great good for society, and to potentially
exacerbate long-standing inequalities and perpetuate errors in
medicine. If done properly and ethically, medical AI can become a
flywheel for more equitable care—the more it is used, the more
data it acquires, the more accurate and general it becomes. The
key is in understanding the data that the models are built on and
the environment in which they are deployed. Here, we present
four key considerations when applying ML technologies in
healthcare: assessment of data, planning for model limitations,
community participation, and trust building.
Data quality largely determines model quality; identifying

inequities in the data and taking them into account will lead
towards more equitable healthcare. Procuring the right datasets
may depend on running human-in-the-loop programs or broad-
reaching data collection techniques. There are a number of
methods that aim to remove bias in data. Individual-level bias can
be addressed via expert discussion145 and labeling adjudication146.
Population-level bias can be addressed via missing data supple-
ments and distributional shifts. International multi-institutional

evaluation is a robust method to determine generalizability of
models across diverse populations, medical equipment, resource
settings, and practice patterns. In addition, using multi-task
learning147 to train models to perform a variety of tasks rather
than one narrowly defined task, such as multi-cancer detection
from histopathology images148, makes them more generally useful
and often more robust.
Transparent reporting can reveal potential weaknesses and help

address model limitations. Guardrails to protect against possible
worst-case scenarios—minority, dismissal, or automation bias—
must be put in place. It is insufficient to report and be satisfied
with strong performance measures on general datasets when
delivering care for patients—there should be an understanding of
the specific instances in which the model fails. One technique is to
assess demographic performance in combination with saliency
maps149, to visualize what the model pays attention to, and check
for potential biases. For instance, when using deep learning to
develop a differential diagnosis for skin diseases95, researchers
examined the model performance based on Fitzpatrick skin types
and other demographic information to determine patient types
for which there were insufficient examples, and inform future data
collection. Further, they used saliency masks to verify the model
was informed by skin abnormalities and not skin type. See Fig. 4.
A known limitation of ML is its performance on out-of-

distribution data–data samples that are unlike any seen during
model training. Progress has been made on out-of-distribution
detection150 and developing confidence intervals to help detect
anomalies. Additionally, methods are developing to understand

Fig. 4 Bias in deployment. a Example graphic of biased training data in dermatology. AIs trained primarily on lighter skin tones may not
generalize as well when tested on darker skin157. Models require diverse training datasets for maximal generalizability (e.g.95). b Gradient
Masks project the model’s attention onto the original input image, allowing practitioners to visually confirm regions that most influence
predictions. Panel was reproduced from ref. 95 with permission.
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the uncertainty151 around model outputs. This is especially critical
when implementing patient-specific predictions that impact
safety.
Community participation—from patients, physicians, computer

scientists, and other relevant stakeholders—is paramount to
successful deployment. This has helped identify structural drivers
of racial bias in health diagnostics—particularly in discovering bias
in datasets and identifying demographics for which models fail152.
User-centered evaluations are a valuable tool in ensuring a
system’s usability and fit into the real world. What’s the best way
to present a model’s output to facilitate clinical decision making?
How should a mobile app system be deployed in resource-
constrained environments, such as areas with intermittent
connectivity? For example, when launching ML-powered diabetic
retinopathy models in Thailand and India, researchers noticed that
model performance was impacted by socioeconomic factors38,
and determined that where a model is most useful may not be
where the model was generated. Ophthalmology models may
need to be deployed in endocrinology care, as opposed to eye
centers, due to access issues in the specific local environment.
Another effective tool to build physician trust in AI results is side-
by-side deployment of ML models with existing workflows (e.g
manual grading16). See Fig. 5. Without question, AI models will
require rigorous evaluation through clinical trials, to gauge safety
and effectiveness. Excitingly, AI and CV can also help support
clinical trials153,154 through a number of applications—including
patient selection, tumor tracking, adverse event detection, etc—
creating an ecosystem in which AI can help design safe AI.
Trust for AI in healthcare is fundamental to its adoption155 both

by clinical teams and by patients. The foundation of clinical trust
will come in large part from rigorous prospective trials that
validate AI algorithms in real-world clinical environments. These
environments incorporate human and social responses, which can
be hard to predict and control, but for which AI technologies must
account for. Whereas the randomness and human element of
clinical environments are impossible to capture in retrospective
studies, prospective trials that best reflect clinical practice will shift
the conversation towards measurable benefits in real deploy-
ments. Here, AI interpretability will be paramount—predictive
models will need the ability to describe why specific factors about
the patient or environment lead them to their predictions.
In addition to clinical trust, patient trust—particularly around

privacy concerns—must be earned. One significant area of need
is next-generation regulations that account for advances in
privacy-preserving techniques. ML typically does not require
traditional identifiers to produce useful results, but there are
meaningful signals in data that can be considered sensitive. To
unlock insights from these sensitive data types, the evolution of
privacy-preserving techniques must continue, and further
advances need to be made in fields such as federated learning
and federated analytics.

Each technological wave affords us a chance to reshape our
future. In this case, artificial intelligence, deep learning, and
computer vision represent an opportunity to make healthcare far
more accessible, equitable, accurate, and inclusive than it has ever
been.
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